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The 3F symbols required for the application of the Wigner-Eckart theorem to strong 
ligand field matrix elements are derived for complex basis functions quantized on the 
C z C x r z  cz2 and C XY 4, a , axes of an octahedron. This scheme provides a standardized 
analysis technique for the matrix elements of subgroups in each of the four physically 
significant chains of the double group O~. This standardization yields the minimum 
necessary number of ligand field parameters in any subgroup and makes possible the 
direct comparability of equivalent parameters in different symmetries. A unique nu- 
merical labelling for both representations and complex components on each axis pro- 
vides both a simple component selection rule algebra and numerical phase factors 
governing permutation and conjugation of the 3F symbols. 
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1. Introduction 

The formulation of quantitative series for various ligand field parameters may require 
comparisons of parameter values observed in complexes of different symmetries. Direct 
comparisons are possible when the parameters are defined using a standardized adaptation 
technique for each different quantization. One such standard system can be derived by 
projection of basis functions and operator components from the double octahedral group 
O~. Quantization on each of the four available axes of this generative group yields orthonor- 
real bases which are naturally subducible into most finite groups of interest [1,2] .  

In this system the Harniltonian of any subgroup of O~ is a sum of products of radial 
parameters and normalized octahedral tensor components. Each component can be realized 
as a normalized linear combination of spherical harmonics. These N.S.H. Hamiltonians [2] 
guarantee that the magnitude of any parameter remains independent of the chosen 
quantization G n for any group G where n is the modulus of the quantization axis. If nor- 
maiization of the operator components is neglected either the parameter changes value or 
the bases of the finite group must be renormalized [3]. 

The matrix elements of N.S.H. Hamiltonians can be factored using the Wigner-Eckart 
theorem [4-6] : 

(r'~'l rk~k Ir~> = (-1)r ' -4  ( r ' r k r )~ r ' l l  rk ii r> (1) 
\ "Y")'k'Y / 
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By analogy with atomic vector coupling the coupling coefficients can be refactored in 
terms of 31" symbols [4]. A set of  these is needed for each quantization and their proper- 
ties depend on the chosen realization [4, 5]. Using a complex basis set, a numerical phase 
factor can be defined and the component selection rules abstracted as a finite numerical 
algebra [7], 

2. Theory 

2.1. Representation and Component Labels 

For the octahedron and any of its subgroups the representation label may be uniquely 
assigned the lowest value of J in R 3 as J(Pi), from which it is subduced. The sets of 
component labels can be derived from the modulus n of the chosen axis of the complex 
quantization. The most convenient choice of labels is centrosymmetric about 7 = 0 so 
that 

n 
"/MAX = ~ (2) 

The value assigned to each 'Yi is the minimum value of mj appearing in the linear combina- 
tion of components o fR  3 up to the limit of  Eq. (2). At this limit 

_3fiMAX 2 H _  n --=_2II I I= I I=  n 21I= 7 ~ a x  2I/ (3) 
n 2 n 2 n n 

and two families of solutions (3 ,P + 3'f) and ( - 3 ' f  + 72 P) exist. This indistinguishability is 
removed by recombination: 

")'MAX = ~ J + 
J n n +  

(4) 

when n is even, or 

(s) 

when n is odd. 

2.2. Definition and Behaviour of  3F Symbols 

Using these labelling conventions for both F i and 7i, the 3 I '  symbols for complex bases 
of O~ can be defined; 

P1P2P3t = ( -1 )  (s(rO-s(rO+~*) X[P] -1/2 (g  P2721P373) (6) 
VlV2V~/ 
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in which X[P] is the degeneracy of P. For odd order quantization axes; 

(3')* = -3 ' .  ( -1 )  v 

and for even order axes; 

(3'+)* = 3'+. ( -1 )  v 

but 

(7- )*  = 3'-- (-1) v+: 

(7) 

(8) 

To minimize the size of the tables of 3 P symbols, the conjugation and permutation 
properties are defined using these phase conventions. From the general form of conjugation 
behaviour [8]. 

71')'23"3 ] \3'13'23'3 ] 

this is identical to negation except for components labelled (3'-) which do not change 
sign. The general form for permutation of columns is 

(9) 

3'13'23'3 3'13'33'2 

which is equivalent to that of V coefficients [5] when the symmetric or antisymmetric 
squares of representations are defined. 

(lo) 

2.3. Algebra of  3 P Symbols 

a) The representations are combined using the cotwentional Kronecker triple product 
rules [5]. 

b) The component algebra is identical to that of 3-j symbols [8] except when 
3"i = +-n/2. A more complete statement of the component algebra is: 

modn(3'l + 3'2) = -modn(3'~) (11) 

This rule permits 3P symbols with two identical columns and an odd representation 
sum, EiJ(Pi), to exist, unlike such analogous 3-]" symbols [8], if 

( -1)[71 + 3'~ + (7~)*] = ( -1 )  (12) 

This condition occurs in 3F symbols with two 13'-) components and was seen in 
previous selection rule schemes involving components labelled [ 0 -  > [5]. 

2.4. Selection Rules under Specific Quantizing Axes o f  O~ 

The selection, permutation and negation rules of 3U symbols for basis functions on each 
quantizing axis are changed from the 3-j behaviour [8] according to the value of 3'MAX- 
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Table 1. C~ 31-' Symbols 

1~1 P2 I"3 3"I 3'2 3"~ (Val) 2 P erm.b ConJ -c 

E'  E '  T1 1/2 1/2 - 1  * 1/3 d 0 0 
E '  E '  A1 1/2 -1 /2  0 1/2 1 1 
E '  E '  T1 1/2 -1 /2  0 1/6 0 0 
E '  G E 1/2 3/2 2+ * 1/4 0 0 
E '  G 7'2 1/2 3/2 2 -  1/6 0 1 
E '  G TI 1/2 1/2 -1  1/12 1 1 
E '  G T2 1/2 1/2 -1  1/4 0 0 
E '  G T1 1/2 -1 /2  0 * 1/6 1 1 
E '  G E 1/2 -1 /2  0 * 1/4 0 0 
E G T1 1/2 -3 /2  1 1/4 1 1 
E G 7'2 1/2 -3/2 1 1/12 0 0 
E '  E"  A2 1/2 3/2 2 -  * 1/2 0 1 
g '  E"  7'2 1/2 3/2 2 -  * 1/6 1 0 
E'  E"  7"2 1/2 -3 /2  -1  * 1/3 1 1 
G G T1 3/2 3/2 1 * 5/48 n a n a 
G G 7'2 3/2 3/2 1 3/48 n n 
G G E 3/2 1/2 2+ 1/8 1 1 
G G 7'2 3/2 1/2 2 -  * 1/12 n n + 1 
G G A2 3/2 1/2 2 -  * 1/4 0 1 
G G TI 3/2 -1 /2  -1  * 1/16 n n 
G G T2 3/2 -1 /2  -1  * 5/48 n n 
G G A1 3/2 -3 /2  0 1/4 1 1 
G G E 3/2 -3 /2  0 1/8 1 1 
G G T1 3/2 -3 /2  0 1/12 n n 
G G T1 1/2 1/2 - 1  5/48 n n 
G G T2 1/2 1/2 -1  3/48 n n 
G G A1 1/2 -1 /2  0 1/4 1 1 
G G T~ 1/2 -1 /2  0 1/12 n n 
G G E 1/2 -1 /2  0 1/8 1 1 
G E"  T1 3/2 3/2 1 * 1/12 1 1 
G E" I"2 3/2 3/2 1 * 1/4 0 0 
G E"  T~ 3/2 -3 /2  0 * 1/6 1 1 
G E"  E 3/2 -3 /2  0 * 1/4 0 0 
G E"  E 1/2 3/2 2+ 1/4 0 0 
G E"  T2 1/2 3/2 2 -  1/6 0 1 
G E"  T 1 1/2 -3 /2  1 * 1/6 1 1 
G E" T 2 1/2 -3 /2  1 1/6 0 0 
E"  E"  TI 3/2 3/2 1 * 1/3 0 0 
E "  E"  A1 3/2 -3 /2  0 1/2 1 1 
E"  E"  T1 3/2 -3 /2  0 * 1/6 0 0 
T1 T1 E 1 1 2+ 1/4 0 0 
T1 T1 T2 1 1 2 -  * 1/6 0 1 
T1 T1 T1 1 0 -1  * 1/6 1 1 
T1 T1 /'2 1 0 -1  * 1/6 0 1 
T1 T1 A1 1 - 1  0 1/3 0 0 
T1 T1 E 1 -1  0 1/12 0 0 
7"1 g 7'2 1 0 -1  i /4 1 1 
T1 E T2 1 2+ 1 1/12 1 1 
T1 T2 A2 1 1 2 -  1/3 0 1 
TI T2 7'2 1 1 2-- 1/6 1 0 
T1 T1 A1 0 0 0 1/3 0 0 
T1 T1 E 0 0 0 1/3 0 0 
T 1 E T 2 0 2+ 2 -  * 1/3 1 0 
T1 T2 A2 0 2 -  2 -  1/3 0 0 
E E A 1 0 0 0 1/2 0 0 
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i01 

r l  P2 r'3 Yt V2 7~' (Val) 2 P erm.b Conj .c 

E E E 0 0 0 1/4 0 0 
E E E 0 2+ 2+ 1/4 0 0 
E E A2 0 2+ 2 -  1/2 1 0 
E /'2 /'2 0 1 -1 1/2 0 0 
E T2 T 2 0 2 -  2 -  * 1/3 0 0 
E E A 1 2+ 2+ 0 1/2 0 0 
E /'2 7"2 2+ 1-  1 1/6 0 0 
T2 /'2 T2 1 2- 1 1/6 0 1 
A2 A2 A1 2 -  2 -  0 1 0 0 
A1 A1 A1 0 0 0 1 0 0 

a n = Z i J i  where J i  are the actual J not the J(Fi)since G x G is not simply 
b perm. = behaviour under interchange of adjacent columns. 
c conj. = behaviour under "negation" of all components (see text). 
d , = square root is negative. 

reducible. 

C X Y Z  _ 

C2- 

Selection and permutation roles follow 3-] behaviour. Conjugation behaviour 
for 3P symbols with one or three [ 2 - )  components is opposite to permutation. 
These properties are noted in the tables as 0 or 1 for even or odd behaviour 
under either operation. 
The behaviour of  3F symbols for components of  weakly adapted bases is 
identical to that of  3-] symbols. Strongly adapted bases involve special defini- 
tion problems not considered here. 
Under any C2 quantization only three component labels 1 - ,  0, 1 + should be 
allowed. Since the system is also adapted to O~ two C2 axes can be distinguished 
and further component labels introduced. 
The coincident C z divides the self conjugate components into three subclasses; 

odd special components 1 _+ (= n/2) 
even special components 0 
even special components 2 -+ 

No integer components with natural signs exist and the natural sign of  special 
components is always taken positive in (11). 
The special rules permit the four symbols 

T1TaT2 and(TiT2& ] 
1_+ 1.+ 2 - )  \1_+ 1 . + 2 - ]  

to exist 
The absence of a C4 axis permits a redistribution of  component labels. These 
are 0_+ and 1 _+, the 0 -  being identified with 2 -  in the tables. The selection 
rules are the same as for C z quantization. 

2.5. Evaluation of Existing 3 P Symbols 

The sign and magnitude of  317 symbols were defined [ 1] in a previous paper in terms 
of  a product  of Subduction Coefficients, a normalization constant and the appropriate 
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Table 2. C~ yz 3 r  coefficients (weakly adapted) 

r l  F2 I"3 ")'1 "/'2 3'~ (71tl) 2 Perm. Conj. 

E' E '  
E ~ E '  
E '  E '  
E'  G 
E '  G 
E '  G 
E '  G 
E '  G T 2 
E '  G T 1 
E '  G T 2 
E '  G T 1 
E'  G E 
E '  G T 2 
E'  E"  T 2 

T1 1/2 1/2 
AI 1/2 - 1 / 2  
T1 1/2 - 1 / 2  
E 1/2 3/2 
1"2 1/2 3/2 
T1 1/2 1/2 
E 1/2 1/2 

1/2 1/2 
1/2 -1/2 
1/2 -1/2 
1/2 - 3 / 2  
1/2 -312 
112 -312 
i/2 1/2 

E'  E "  A 2 1/2 - 1 / 2  
E '  E "  T2 1/2 - 1 / 2  
G G A1 3/2 3/2 
G G T1 3/2 3/2 
G G T 2 3/2 3/2 
G G T1 3/2 1/2 
G G T2 3/2 1/2 
G a E 3/2 1/2 
a G T1 3/2 - 1 / 2  
a G T2 3/2 - 1 / 2  
G G E 3/2 - 1 / 2  
G G T1 3/2 - 3 / 2  
G G T 2 3/2 - 3 / 2  
G G A 2 3/2 - 3 / 2  
G G A1 3/2 - 3 / 2  
G G T1 1/2 1/2 
G G T 2 1/2 1/2 
G G TI 1/2 - 1 / 2  
G G 7"2 1/2 -112 
G G A2 1/2 - 1 / 2  
G G A1 1/2 - 1 / 2  
G E "  T1 3/2 1/2 
G E"  E 3/2 1/2 
G E "  T 1 3/2 - 1 / 2  
G E"  7"2 3/2 - 1 / 2  
G E"  E 3/2 - 1 / 2  
G E"  T 1 1/2 1/2 
G E"  T 2 1/2 1/2 
G E" E 1/2 1/2 
G E" T 1 1/2 - 1 / 2  
G E "  72 1/2 - 1 / 2  
E"  E"  T1 1/2 1/2 
E"  E"  T 1 1/2 - 1 / 2  
E"  E "  A 1 1/2 - 1 / 2  
T1 T 1 E 1 1 
T1 T1 T 2 1 1 
TI T1 T1 1 0 

- 1  * 1/3 0 0 
0 1/2 1 1 
0 1/6 0 0 
1 1/6 0 i a 
1 * 1/3 0 1 

- i  1/12 I I 
- 1  1/2 0 0 
-I 1/12 0 0 

0 * 1/6 1 1 
0 * 1/6 0 0 
1 1/2 1 1 
1 1/12 0 0 
1 1/36 0 0 

-1  * 1/3 1 1 
0 1/2 0 0 
0 1/6 1 1 
0 * 2/3 n b n + 1 
0 5/54 n n + 1 
0 1/6 n n +  1 

+1 * 5/36 n n + 1 
+1 5/36 n n + 1 
+1 1/12 n n + 1 
- 1  * 1/3 n n 
- 1  * 1/3 n n 
- 1  * 1/6 n n 

0 17/72 n n 
0 1/12 n n 
0 1/36 n n 
0 1/4 n n 

- 1  1/6 n n 
-1  * 1/6 n n 

0 * 1/12 n n 
0 1/12 n n 
0 1/4 n n 
0 * 1/4 n n 
1 2/9 1 0 
1 1/6 0 1 

-1  1/36 1 1 
-1  1/2 0 0 
- 1  1/12 0 0 
- 1  * 1/12 1 1 
- 1  1/12 0 0 
- 1  * 1/2 0 0 

0 1/6 1 1 
0 1/6 0 0 

-1  1/3 0 0 
0 * 1/6 0 0 
0 1/2 1 1 
1 * 1/6 0 1 
1 2/9 0 1 

- 1  * 1/6 1 1 
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Table 3. C$ 3Y coefficients 

Pl I72 P3 71 3'2 "r~ (Val) 2 Perm. Conj. 

E '  E '  T1 1/2 1/2 1+ * 1/6 0 
E '  E '  T~ 1/2 1/2 1 -  * 1/6 0 
E '  E '  A1 1/2 -1 /2  0 * 1/2 1 
E '  E '  T1 1/2 -1 /2  0 1/6 0 
E'  G E 1/2 3/2 2+ * 1/4 0 
E' ~ T2 1/2 3/2 2 -  1/6 o 
E '  G Tt 1/2 1/2 1+ 1/24 1 
E '  G T~ 1/2 1/2 1 -  1/24 1 
E '  G 7'2 I /2 1/2 1+ 3/24 0 
E '  G T2 1/2 112 1 - 3/24 0 
E '  G TI 112 -1 /2  0 * 1/6 1 
E '  G E 112 -112 0 * 1/4 0 
E '  G T1 I/2 -3 /2  t+ 3/24 1 
E '  G T1 1/2 - 3 / 2  1 -  * 3/24 1 
E '  G T 2 t /2  -3 /2  1+ 1/24 0 
E '  G 7"2 1/2 - 3 / 2  1 -  * 1/24 0 
E '  E"  T 2 1/2 3/2 2 -  * 1/6 1 
E '  E"  A2 1/2 3/2 2 -  * 1/2 0 
E '  E "  /'2 1/2 -3 /2  1+ * 1/6 0 
E' E" T2 1/2 -3 /2  1 -  1/6 0 
G G T1 3/2 3/2 1+ * 5]96 n 
G G T1 3/2 3/2 1 - 5196 n 
G G T 2 3/2 3/2 1+ * 3/96 n 
G G T2 3/2 3/2 1 -  * 3/96 n 
G G E 3/2 t /2  2+ 1/8 0 
G G T2 3/2 1/2 2-- - 1/12 n 
G G A2 3/2 1/2 2 -  1/4 n 
G G T1 3/2 - 1 / 2  1+ * 3/96 n 
G G T1 3/2 - 1 / 2  1 -  * 3/96 n 
G G 7"2 3/2 - 1 / 2  1+ * 5/96 n 
G G T2 3/2 -1 /2  1 -  * 5/96 n 
G G A1 3/2 -3 /2  0 - 1 / 4  1 
G G /'1 3/2 -3 /2  0 1/12 n 
G G E 3/2 - 3 / 2  0 1/8 1 
G G Tt 1/2 1/2 1+ 5/96 n 
G G T1 1/2 1/2 1 -  5/96 n 
G G 7'2 1/2 1/2 1+ * 3/96 n 
G G 7'2 112 1/2 1 -  3/96 n 
G G A1 1/2 -1 /2  0 * 1/4 1 
G G 7"i 1/2 -1 /2  0 * 1112 n 
G G E 1/2 - 1 / 2  0 1/8 1 
G E"  / ' i  3/2 312 1+ * 1/24 1 
G E"  TI 3/2 312 1 -  1/24 1 
G E" I"2 3/2 3/2 1+ * 3/24 0 
G E"  T 2 3/2 3/2 1 - 3/24 0 
G E"  T 1 3/2 -3 /2  0 * 1/6 1 
G E"  E 3/2 - 3 / 2  0 * 1/4 0 
G E"  E 1/2 3/2 2+ 1/4 0 
a E "  /'2 t12 3/2 2 -  * 1/6 0 
G E" 7'1 I/2 -3 /2  1+ * 3/24 1 
G E "  T 1 1/2 - 3 / 2  1 -  * 3/24 1 
C E "  T2 1/2 -312 1 -  1/24 0 
G E "  T 2 1t2 - 3 / 2  1 -  * 1124 0 
E" E "  TI 3/2 3/2 1+ 1/6 0 
E "  E"  7"1 312 3/2 1 -  * 1/6 0 

0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
0 
1 
n 

n + l  

n 

n + l  
0 
n + l  
n + l  
n 

n + l  

n 

n + l  
1 
n 

1 
n 

n + l  

n 
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1 
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Table 3.-continued 
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F1 P2 1"3 3"1 3'2 3'3 (Val) 2 Perm. Conj. 

E T 2 T1 2+ 1+ 1 -  * 1/12 1 
E T2 7'2 2+ 1+ 1+ * 3/4 0 
E 7"2 T1 2+ 2 -  0 * 1/3 0 
E T2 T1 2+ 2 -  0 * 1/3 1 
E T2 T2 2+ 1 -  1 -  * 1/4 0 
E T2 T2 2+ I -  1 -  * 3/4 0 
7"2 7"2 A1 1+ 1+ A1 * 1/3 0 
T2 7"2 E 1+ 1+ 0 t /12 0 
7"2 T2 E 1+ 1+ 2+ * 1/4 0 
7"2 T2 T 1 1+ 2 -  1+ 1/6 1 
T2 T2 T2 I+ 2 -  1 -  * 1/6 0 
T2 T2 T1 1+ 1 -  0 * 1 /6  1 
7'2 T2 T2 1+ 1 -  2 -  * 1/6 0 
T2 T2 A1 2 -  2 -  0 * 1/3 0 
T2 7"2 E 2 -  2 -  0 * 1/3 0 
T2 T2 T1 2 -  t -  1 -  * 1/6 1 
T2 T2 7"2 2 -  1 -  i+  * 1/6 0 
T2 T2 A1 1 -  1 -  0 1/3 0 
/'2 T2 E 1 -  1 -  0 * 1/12 0 
T2 T2 E 1 -  1 - 2+ 1/4 0 
A2 A2 Al  2 -  2 -  0 1 0 
A1 A1 A1 0 0 0 1 0 

a For all two-fold components, behaviour under conjugation must be even for a 
3P composed of 3 integer reps to exist. 

3q symbol. This procedure is possible if the ratio of  the intermediate coupling coefficients 
is a constant, independent of all Ji: 

[ J1 J2  J3  \ 
E S(.M1)*SM2SM3 { } (__ 1)M-M~ 

mi \ -M1M2Ma/ 
<J, Pl 3'1, J= P23'= l J3 Faya ) 

= 
t t I 

(J1 PIT1, J2 P272 tJaP37a) 
~ S(j]/I~),S_t~I;SM; ( J1 .[2 J3 t 
Mi \-M'IM~M; ] 

( I~l e2  Pa / 

717273 ] 

(t3) 

71'~2 ~/'3 ] 

This ratio is constant when the basis set is quantized to a simply reducible tail group of a 
physically significant [9] chain. This is the case for an Ot~ 4 or O~ 2 quantization since 
C~v and C~o are both simply reducible. However, C~o is not simply reducible and it is not 
possible to define invariant [10] 3P symbols in a strongadaptation to the cXa Yz axis. 
Weak adaptation, truncating the chain at D ~u does yield 3Y symbols since D~a is isomor- 
phous with the simply reducible group D~h. This appeal to D~h is formalization of the 
process of transduction defined earlier [1].  It is these 317 symbols defined in the weakly 
adapted trigonal bases that are given in Table 2. 
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P1 F2 F3 3'1 3'z 3"3 (Value) 2 Perm. Conj. 

E '  E '  T1 112 1/2 1+ * 1/6 0 0 
E '  E r T1 i /2  1/2 1 -  * 1/6 0 1 
E t E '  A1 1/2 --1/2 0 1/2 1 1 
E' E' TI 1/2 - 1 / 2  0 1/6 0 0 
E '  G E 1/2 3/2 0 * 3/16 0 0 
E '  G T~ 1/2 3/2 0 * 1/6 0 0 
E '  G /"2 1/2 3/2 0 -  * 1/24 0 1 
E '  G T1 1/2 1/2 1+ 1/24 1 1 
E '  G T1 1/2 1/2 1 -  1]24 1 0 
E '  G E 1/2 1/2 1 -  * 3/16 0 1 
E '  G 7"2 1/2 1/2 I+ 1/8 0 0 
E '  G TI 1/2 - 1 / 2  0 * 1/6 1 1 
E '  G E 1/2 - 1 / 2  0 * 1/16 0 0 
E '  G T2 1/2 - 1 / 2  0 * 1/8 0 0 
E '  G T1 1/2 -3 /2  1+ 1/8 1 1 
E J G TI 1/2 - 3 / 2  1 -  * 1/8 1 0 
E '  G E 1/2 - 3 / 2  1 -  1/16 0 1 
E' G "1"2 1/2 - 3 / 2  1+ 1/24 0 0 
E t E "  A2 1/2 t /2  1+ * 1/2 0 0 
E '  E"  T2 1/2 1/2 1+ * 1/6 1 1 
E '  ~ E "  T2 1/2 - 1 / 2  0 -  * 1/6 1 0 
E '  E"  7"2 1/2 - 1 / 2  0 * 1/6 1 1 
G G A2 3/2 3/2 1+ 3/16 n n 
G G T1 3/2 3/2 1+ * 5/96 n n 
G G T1 3/2 3/2 1 -  * 5/384 n n + 1 
G G T~ 3/2 3/2 1+ 9/128 n n 
G G E 3/2 I /2 0 3/32 1 1 
G G /'2 3/2 1/2 0 *29/384 n n 
G G 7"2 3/2 1/2 0 -  "17/384 n n + 1 
G G T1 3/2 I/2 0 5/128 n n 
G G T 1 3/2 - 1 / 2  1+ * 1/32 n n 
G G T1 3]2 - 1 / 2  1 -  * 5/128 n n + 1 
G G E 3/2 - 1 / 2  1 -  1/8 1 0 
G G A2 3/2 - 1 / 2  1+ * 1/16 0 0 
G G 7"2 3/2 - 1 / 2  1+ "17/384 n n 
G G A1 3/2 - 3 / 2  0 1/4 1 1 
G G T1 3/2 - 3 / 2  0 29/384 n n 
G G E 3/2 - 3 / 2  0 1/32 1 1 
G G Tz 3/2 - 3 / 2  0 1/32 n n 
G G T2 3/2 - 3 / 2  0 -  1/128 n n + 1 
G E "  TI 3/2 1/2 0 * 1/24 1 1 
G E "  E 3/2 1/2 0 * 1/16 0 0 
G E "  T2 3/2 1/2 0 * 1/8 0 0 
G E"  T2 3/2 1/2 2 -  1/8 0 1 
G E "  T1 3/2 - 1 / 2  1+ * 1/24 1 1 
G E "  T1 3/2 - 1 / 2  1 -  * 1/6 1 0 
G E "  E 3/2 - 1 / 2  1 -  * 3/16 0 1 
G G T1 1/2 1/2 1+ 5/96 n n 
G G T1 1/2 1/2 1 -  29/384 n n + t 
G G A 2 1/2 1/2 1+ ~ * 3/16 0 0 
G G T 2 1/2 1/2 1+ * 1/128 n n 
G G AI  1/2 - 1 / 2  0 * 1/4 1 1 
G G TI 1/2 - 1 / 2  0 * 5/384 n n 
G G E 1/2 - 1 / 2  0 1/32 1 t 
G G T 2 1/2 - 1 / 2  0 1/32 n n 
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Pl P2 I"3 ",'1 3'2 3'3 (Value) 2 Perm. Conj. 

E T2 TI 1 -  1+ 0 * 1/t2 1 
g 7"2 /'2 1 -  1+ 0 -  1/4 0 
E 7"2 T1 1 -  0 t+ 1/3 1 
E A2 E 1-  1+ 0 1/2 i 
7'2 T2 A1 0 -  0 -  0 * 1/3 0 
7"2 7"2 E 0 -  0 -  0 * 1/12 0 
7"2 T2 7"2 0 -  0 -  0 * 1/6 0 
7"2 7'2 E O -  1+ 1 -  1/4 0 
I"2 7'2 T1 O- 1+ 1+ * I/6 1 
T2 I"2 7"1 O- 0 0 * 1/6 1 
T2 /'2 T2 0 -  0 0 -  * 1/6 0 
2"2 T2 A1 1+ 1+ 0 * 1/3 0 
T2 2"2 E 1+ 1+ 0 * 1/12 0 
7"2 7"2 7"2 1+ 1+ 0 * 1/6 0 
7'2 7"2 T1 1+ 0 1-  1/6 1 
7'2 7'2 7"2 1+ 0 1+ 1/6 0 
7'2 A2 T1 1+ 1+ 0 i/3 0 
To_, r 2 A1 0 0 0 1/3 0 
T:~ T2 E 0 0 0 * 1/3 0 
2"2 A2 TI 0 t+ 1+ 1/3 0 
A2 A:~ A 1 1+ 1+ 0 1 0 
At A1 A~ 0 0 0 1 0 

a See footnote on Table 3. 

The subduction coefficients used to calculate the magnitudes of  the 3F symbols were 
obtained by projection of  the complex octahedral bases for each quantization from integer 
and half-integer spherical harmonics up to J = 7 [I 1]. 

2. 6. Comparison wi th  Previous Coupling Def in i t ions  f o r  C omp lex  Sets  

In an earlier paper the relationship o f  the present 317 symbols to the V coefficients of  
Griffith was defined [1]. Two phase factors, one absorbed into the V coefficient and the 
second into the accompanying reduced matrix element are now accommodated in the 
single phase factor in (6). In addition, the present direct projection of  the complex octa- 
hedral function does not result in the same bases obtained using Griffith's transformation 
from the real form on T1 and T 2 alone [5],  the present 3F symbols do not coincide 
either in phase or magnitude with V coefficients. 

The 3-/symbols defined by Harnung and Schaeffer display an algebra similar to that for 
3/" symbols with three phase differences [4],  

a) The 3/~ symbols follow Condon and Shortley conventions while the 3-1 symbols 
follow the Racah convention. This imposes a modulus 4 on (ll + 12 + 13) since 
( i  4 = 1) 

b) An extra factor i is introduced in defining the antisymmetric combination M s. 
c) No phase factor is defined between coupling coefficients and 3-I symbols. 

The third factor means the 3-/symbols require special ordering o f  components in 
order to relate them to conventional 3-/' (and hence the present 3P) symbols. 
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